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Abstract

In [18], two of the authors developed a high order accurate numerical boundary condition

procedure for hyperbolic conservation laws on a Cartesian mesh, which allows the compu-

tation using high order finite difference schemes on Cartesian meshes to solve problems in

arbitrary physical domains whose boundaries do not coincide with grid lines. This procedure

is based on the so-called inverse Lax-Wendroff (ILW) procedure for inflow boundary condi-

tions and high order extrapolation for outflow boundary conditions. However, the algebra of

the ILW procedure is quite heavy for two dimensional (2D) hyperbolic systems, which makes

it difficult to implement the procedure for order of accuracy higher than three. In this paper,

we first discuss a simplified and improved implementation for this procedure, which uses the

relatively complicated ILW procedure only for the evaluation of the first order normal deriva-

tives. Fifth order WENO type extrapolation is used for all other derivatives, regardless of

the direction of the local characteristics and the smoothness of the solution. This makes the

implementation of a fifth order boundary treatment practical for 2D systems with source

terms. For no-penetration boundary condition of compressible inviscid flows, a further sim-

plification is discussed, in which the evaluation of the tangential derivatives involved in the

ILW procedure is avoided. We test our simplified and improved boundary treatment for Eu-

ler equations with or without source terms representing chemical reactions in detonations.

The results demonstrate the designed fifth order accuracy, stability, and good performance

for problems involving complicated interactions between detonation/shock waves and solid

boundaries.
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1 Introduction

In [18], two of the authors developed a high order accurate numerical boundary condition

procedure for finite difference methods for solving hyperbolic conservation laws on a Carte-

sian mesh, while the physical domain can be arbitrarily shaped. The challenge is that the

physical boundary does not usually coincide with grid lines and can intersect the Cartesian

grids in an arbitrary fashion. For the sake of accuracy and stability, a so-called inverse Lax-

Wendroff (ILW) procedure was proposed. This procedure helps us obtain normal derivatives

at inflow boundaries from time derivatives and tangential derivatives by a repeated use of

the partial differential equations (PDEs). Together with high order extrapolation at outflow

boundaries, we can impose accurate values for the ghost points near the boundaries by a

Taylor expansion. Numerical examples in [18] show that this method is high order accurate

and stable under the standard CFL conditions determined by the interior schemes. In [19],

this approach was extended to solve compressible inviscid flows involving complex moving

geometries.

The algebra of the ILW procedure, which relies on the PDEs, can be very heavy for fully

nonlinear systems of equations in two dimensions (2D). Of course, it would be even heavier

for 2D problems with source terms. For this reason, in [18, 19] we only implemented third

order boundary treatment for 2D Euler equations, although our method was designed to

achieve arbitrarily high order of accuracy for general equations with source terms.

In this paper, we aim to simplify and improve our boundary treatment procedure such

that it is easier to implement for achieving higher order accuracy. We demonstrate this

simplified and efficient procedure on the scheme with fifth order accuracy, which is the same

order as our interior scheme, for both 2D regular Euler equations and 2D reactive Euler

equations which contain source terms representing one-step chemical reactions in detona-

tions. We investigate each term in the Taylor expansion and find that only the first two

terms, i.e., the constant term and the first order normal derivative term, are crucial to be

implemented by the costly ILW procedure to ensure stability. In other words, near the inflow
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boundaries, only the first order normal derivative needs to be obtained by the ILW proce-

dure. All the higher order normal derivatives can be simply obtained by extrapolation of a

suitable order, presumably because these terms are multiplied by O(hk) for k > 2, where h is

the mesh size, and contribute little to stability. This simplified algorithm significantly alle-

viates the complicated algebra in the ILW procedure, especially for 2D systems with source

terms. We note that a similar idea was proposed by Qiu and Shu for the Lax-Wendroff time

discretization [13], in which they performed a weighted essentially non-oscillatory (WENO)

approximation only for the reconstruction of the fluxes to the first order time derivative to

avoid spurious oscillations and used the inexpensive central difference approximation for the

reconstruction of the higher order time derivatives.

The ILW procedure can be further simplified for no-penetration boundary condition at

solid walls of compressible inviscid flows with or without chemical reactions. In this special

but important case, the first time derivative of normal momentum can be converted to the

first normal derivatives without introducing any tangential derivatives. As a result, we do

not need to do any numerical differentiation. The same conclusion can be made if we consider

(reactive) Euler equations in primitive variables. In fact, the effectiveness and robustness of

imposing primitive variables instead of conservative variables was verified in [19] where the

no-penetration boundary condition is prescribed in normal velocity.

Our fifth order boundary treatment requires fifth order extrapolation for both smooth

solutions and solutions containing strong discontinuities. In [18], we used Lagrange extrapo-

lation or least squares extrapolation if the solution is smooth near the boundary. Otherwise,

we developed a third order accurate WENO type extrapolation to prevent overshoot or un-

dershoot near the discontinuities. We extend the WENO type extrapolation to fifth order

accuracy in this paper and use it in both smooth and non-smooth cases. In this sense, our

method is improved to be more uniform.

There are many successful boundary treatment techniques based on Cartesian grids be-

sides [18]. Unfortunately, most of them are at most second order accurate. For example,
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a Cartesian embedded boundary method was developed to solve the wave equation with

Dirichlet or Neumann boundary conditions in [8, 9, 10] and to solve hyperbolic conservation

laws in [17]. An internal boundary method based on a reflection technique and interpolation

was developed to solve ideal and non-ideal compressible reactive flows in [25] and detona-

tion problems in [11, 21, 22]. Engineering applications in detonations usually require that

simulations be carried out for complex geometries. This involves interaction of detonations

with complex solid boundaries. If the accuracy of numerical boundary treatment is low, the

error will pollute the computational results in internal domain although the computational

accuracy of internal domain is of high order. Thus, it is necessary to construct a high order

numerical boundary treatment to investigate complicated interactions between detonations

and solid boundaries.

The remainder of the paper is organized as follows. We first give an overview of the

discretization of the problem. Then we concentrate on the issue of imposing the values of

ghost points. For 1D Euler equations, we propose that the kth order spatial derivatives, k >

2, can be simply obtained by extrapolation in all circumstances. The fifth order WENO type

extrapolation is developed for this purpose. The improvement for 1D problems is extended

to 2D reactive Euler equations. The tangential derivatives in the 2D ILW procedure can be

avoided in the case of no-penetration boundary condition at solid walls. Numerical examples

of (reactive) Euler equations are shown in Section 3. We can see our boundary treatment is

fifth order accurate, stable, and capable of treating interactions between denotation/shock

waves and solid boundaries with good resolution. Concluding remarks are given in Section

4.

2 Scheme formulation

We consider strongly hyperbolic conservation laws with source term for U = U(x, y, t) ∈ R2

{

U t + F (U )x + G(U)y = S(U) (x, y) ∈ Ω, t > 0,
U(x, y, 0) = U 0(x, y) (x, y) ∈ Ω̄,

(2.1)

4



on a bounded domain Ω with appropriate boundary conditions prescribed on ∂Ω at time t.

We assume Ω is covered by a uniform Cartesian mesh with mesh size ∆x = ∆y = h, but the

boundary ∂Ω does not need to coincide with any grid lines. The semi-discrete approximation

of (2.1) is given by

d

dt
U i,j(t) = −1

h

(

F̂ i+1/2,j − F̂ i−1/2,j

)

− 1

h

(

Ĝi,j+1/2 − Ĝi,j−1/2

)

+ S (U i,j(t)) , (2.2)

where F̂ i+1/2,j and Ĝi,j+1/2 are the numerical fluxes. We use a third order total variation

diminishing Runge-Kutta (RK) method [16] to integrate the system of ordinary differential

equations (2.2) in time

U
(1)
i,j = Un

i,j + ∆tL
(

Un
i,j

)

,

U
(2)
i,j =

3

4
Un

i,j +
1

4
U

(1)
i,j +

1

4
∆tL

(

U
(1)
i,j

)

, (2.3)

Un+1
i,j =

1

3
Un

i,j +
2

3
U

(2)
i,j +

2

3
∆tL

(

U
(2)
i,j

)

,

where L(·) is the operator defined by the right-hand side of (2.2).

Suppose we have a time dependent boundary condition g(t). Following the idea in [3], we

can easily show that for the hyperbolic system (2.1) with source term the following match

of time levels at the boundary maintains the third order accuracy of (2.3)

Un ∼ g(tn),

U (1) ∼ g(tn) + ∆tg′(tn), (2.4)

U (2) ∼ g(tn) +
1

2
∆tg′(tn) +

1

4
∆t2g′′(tn).

For simplicity, we denote the boundary conditions for all three stages at time level t = tn by

g(tn), although g(tn) is actually different for each stage according to (2.4).

We use the fifth order finite difference WENO scheme with the Lax-Friedrichs flux split-

ting [7] to form the numerical fluxes F̂ i+1/2,j and Ĝi,j+1/2 in (2.2). The scheme requires

a seven point stencil in both x and y directions. Near ∂Ω where the numerical stencil is

partially outside of Ω, up to three ghost points are needed in each direction. We concentrate

on how to define the values of the ghost points at time level t = tn in the rest of the paper.
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2.1 One-dimensional systems

We consider 1D compressible Euler equations without source term

U t + F (U)x = 0, x ∈ (−1, 1), t > 0,

where the conservative variables

U =





U1

U2

U3



 =





ρ
ρu
E





and the flux

F (U) =







U2

(γ − 1)U3 + 3−γ
2

U2
2

U1(

γU3 − γ−1
2

U2
2

U1

)

U2

U1






=





ρu
ρu2 + p
u(E + p)



 .

ρ, u, p and E describe the density, velocity, pressure and total energy, respectively. The

equation of state has the form

E =
p

γ − 1
+

1

2
ρ
(

u2 + v2
)

,

where γ is the (constant) specific heat ratio. The sound speed is c =
√

γp/ρ. We consider

the right boundary x = 1. The left boundary can be treated similarly.

Let us discretize the interval (−1, 1) by a uniform mesh

−1 + h/2 = x0 < x1 < . . . < xN = 1 − h/2.

We assume U 0, . . . , UN have been updated from time level tn−1 to time level tn. Here we

suppress the tn dependence without causing any confusion. We proceed as in [18] to construct

values of ghost points UN+1, . . . , UN+3 by a fifth order Taylor expansion

(Um)j =

4
∑

k=0

(xj − 1)k

k!
U∗(k)

m , m = 1, 2, 3, j = N + 1, . . . , N + 3, (2.5)

where U
∗(k)
m is a (5 − k)th order approximation of the spatial derivative ∂kUm

∂xk

∣

∣

∣

x=1, t=tn
.

We first do a local characteristic decomposition to decide the inflow and outflow boundary

conditions. Denote the Jacobian matrix of the flux near the boundary by

A⊥ (UN) =
∂F (U)

∂U

∣

∣

∣

∣

U=UN

.
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A⊥(UN) has three eigenvalues λ1 = uN − cN , λ2 = uN , λ3 = uN + cN and a complete set of

left eigenvectors l1(UN), l2(UN), l3(UN) which forms a matrix

L (UN) =





l1(UN)
l2(UN)
l3(UN)



 =





l1,1 l1,2 l1,3

l2,1 l2,2 l2,3

l3,1 l3,2 l3,3



 .

For definiteness, we assume λ1 < λ2 < 0 and λ3 > 0. Thus two boundary conditions are

needed, for example, Um(1, t) = gm(t), m = 1, 2. We define the local characteristic variables

Vm at grid points near the boundary by

(Vm)j = lm(UN)U j , m = 1, 2, 3, j = N − 4, . . . , N. (2.6)

We extrapolate (Vm)j to the boundary with a fifth order WENO type extrapolation and

denote the extrapolated kth order derivative of Vm at the boundary by V
∗(k)
m , k = 0, . . . , 4,

m = 1, 2, 3. The WENO type extrapolation will be described in detail in the next subsection.

We impose U
∗(0)
1 = g1(tn) and U

∗(0)
2 = g2(tn). Because of the signs of the corresponding

eigenvalues, V1, V2 are the ingoing local characteristic variables and V3 is outgoing. Therefore,

for stability reason, U
∗(0)
3 is solved by the extrapolation equation of V3

l3,1U
∗(0)
1 + l3,2U

∗(0)
2 + l3,3U

∗(0)
3 = V

∗(0)
3 . (2.7)

Next we find the first spatial derivatives U
∗(1)
m with the ILW procedure for U1 and U2, together

with the extrapolation equation of V3. Using the first two equations of the Euler system, we

write the first time derivatives of U1, U2 as

∂U1

∂t
= −∂U2

∂x
,

∂U2

∂t
= −(γ − 1)

∂U3

∂x
− 3 − γ

2

(

2U2

U1

∂U2

∂x
− U2

2

U2
1

∂U1

∂x

)

.

Notice that the left-hand side of the above equations is already known at the boundary. U
∗(1)
m

can then be solved by the linear system

U
∗(1)
2 = −g′

1(tn),
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(γ − 1)U
∗(1)
3 +

3 − γ

2





2U
∗(0)
2

U
∗(0)
1

U
∗(1)
2 −

(

U
∗(0)
2

U
∗(0)
1

)2

U
∗(1)
1



 = −g′
2(tn), (2.8)

l3,1U
∗(1)
1 + l3,2U

∗(1)
2 + l3,3U

∗(1)
3 = V

∗(1)
3 .

Repeatedly using the Euler equations and the extrapolation equation, we are able to solve

U
∗(k)
m , k = 2, 3, 4. However, the algebra of the ILW procedure becomes more and more

complicated for larger k. See [18] for the formulas of k = 2. In fact, the scheme is still stable

if we simply obtain U
∗(k)
m , k = 2, 3, 4, by extrapolation. Namely,

L (UN)







U
∗(k)
1

U
∗(k)
2

U
∗(k)
3






=







V
∗(k)
1

V
∗(k)
2

V
∗(k)
3






. (2.9)

In other words, the complicated ILW procedure is not needed for spatial derivatives of order

higher than or equal to two, regardless of the direction of the local characteristic variables,

presumably because high order derivative terms are multiplied by O(hk), k = 2, 3, 4, anyway.

We summarize our fifth order boundary treatment at the right boundary x = 1 as follows,

assuming that U j , j = 0, . . . , N , have been updated from time level tn−1 to time level tn.

1. Compute the eigenvalues λm(UN ) and left eigenvectors lm(UN) of the Jacobian matrix

A⊥(UN ) for m = 1, 2, 3. Decide the prescribed inflow boundary conditions gm(t) accord-

ing to the signs of λm(UN).

2. Form the local characteristic variables (Vm)j, j = N −4, . . . , N , as in (2.6). Obtain V
∗(k)
m ,

which is a (5−k)th order approximation of the kth order derivative of Vm at the boundary,

by the WENO type extrapolation. See the next subsection for details.

3. Solve for U
∗(0)
m , m = 1, 2, 3, by the prescribed boundary conditions and extrapolated

values V
∗(0)
m , such as (2.7).

4. Use the ILW procedure to write the first derivative of gm(t) as a linear combination of

first spatial derivatives. Together with the extrapolation equations, form a linear system

with U
∗(1)
m as unknowns, such as (2.8). Solve for U

∗(1)
m , m = 1, 2, 3.
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5. For k = 2, 3, 4, solve for U
∗(k)
m by extrapolation equations (2.9). The ILW procedure is

not needed in this step.

6. Impose the values of ghost points by the Taylor expansion (2.5).

We finally emphasize that we use fifth order WENO type extrapolation in Step 2 regard-

less of the smoothness of the solution.

2.2 1D WENO type extrapolation

We need to obtain a (5 − k)th order approximation of the kth order derivative of the local

characteristic variables Vm at the boundary, using the grid point values in the interior of the

domain (Vm)j, j = N − 4, . . . , N . See Step 2 of the algorithm flowchart in Section 2.1. For

the ease of notation, we suppress the subscript of V in this subsection since each component

is extrapolated by the same method.

If V is smooth near the boundary, the extrapolation can be easily done by constructing

a Lagrange polynomial p4(x) interpolating Vj, j = N − 4, . . . , N , and evaluating the kth

order derivative of p4(x) at the boundary. However, if a discontinuity appears in the stencil

S4 = {xN−4, . . . , xN}, Lagrange extrapolation may lead to severe overshoot or undershoot

near the discontinuity. In this situation, we prefer a lower order accurate but more robust

extrapolation. A third order accurate WENO type extrapolation was developed in Section

2.2 of [18]. We extend it to fifth order accuracy here.

We consider the stencil S4 as five candidate substencils Sr = {xN−r, . . . , xN}, r = 0, . . . , 4.

On each substencil, we can easily construct a Lagrange polynomial pr(x) of degree r such

that pr(xj) = Vj , j = N − r, . . . , N . Suppose V is smooth on S4, V ∗(k) can be extrapolated

by

V ∗(k) =
4
∑

r=0

dr
dkpr(x)

dxk

∣

∣

∣

∣

∣

x=1

,

where d0 = h4, d1 = h3, d2 = h2, d3 = h, d4 = 1 −
∑3

r=0 dr.
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We look for WENO type extrapolation in the form

V ∗(k) =

4
∑

r=0

ωr
dkpr(x)

dxk

∣

∣

∣

∣

∣

x=1

, (2.10)

where ωr are the nonlinear weights depending on the value of Vj. In the case that V is

smooth in S4, we would like to have

ω0 = O(h4), ω1 = O(h3), ω2 = O(h2), ω3 = O(h) and ω4 = 1 −
3
∑

r=0

ωr (2.11)

such that (2.10) is (5 − k)th order accurate. The nonlinear weights ωr are defined by

ωr =
αr

∑4
s=0 αs

with

αr =
dr

(ε + βr)q
, (2.12)

where ε = 10−6, q > 3 is an integer and βr are the smoothness indicators determined by

β0 = h2,

βr =
r
∑

l=1

∫ 1+h

1

h2l−1

(

dl

dxl
pr(x)

)2

dx, r = 1, . . . , 4.

We can show that (2.11) holds if V is smooth in S4. If Sr, r > 1, contains a discontinuity but

Sr−1 does not, we have ωs = O(hr−1−s), s = 0, . . . , r−1, and ωs = O(h2q+r−1−s), s = r, . . . , 4.

Namely, V ∗(0) reduces to a rth order approximation and as h → 0 the weights assigned to

the non-smooth substencils Sr, . . . , S4 vanish. The proof is similar to that in Section 2.2 of

[18] and is omitted here.

2.3 Two-dimensional problems

We consider 2D compressible reactive Euler equations

U t + F (U)x + G(U)y = S(U), (x, y) ∈ Ω, t > 0, (2.13)

10



where

U =













U1

U2

U3

U4

U5













=













ρ
ρu
ρv
E
ρY













, F (U) =













ρu
ρu2 + p

ρuv
u(E + p)

ρuY













,

G(U) =













ρv
ρuv

ρv2 + p
v(E + p)

ρvY













, S(U) =













0
0
0
0
ω













.

Y describes the reactant mass fraction and the source term is assumed to be in an Arrhenius

form

ω = −KcρY e−T+/T ,

where T = p/ρ is the temperature, T+ is the activation temperature and Kc is a constant.

The equation of state has the form

E =
p

γ − 1
+

1

2
ρ(u2 + v2) + ρQY, (2.14)

where Q is the (constant) heat release due to the chemical reaction. Notice that if Y ≡ 0,

then (2.13) reduces to the usual compressible Euler equations without source term.

We proceed as in Section 2.5 of [18]. We assume the values of all the grid points inside

Ω have been updated from time level tn−1 to time level tn. For a ghost point P = (xi, yj),

we find a point P0 = (x0, y0) = x0 on the boundary ∂Ω such that the normal n(x0) at P0

goes through P . The sign of the normal n(x0) is chosen in such a way that it is positive if

it points to the exterior of Ω. We set up a local coordinate system at P0 by

(

x̂
ŷ

)

=

(

cos θ sin θ
− sin θ cos θ

)(

x
y

)

= T

(

x
y

)

, (2.15)

where θ is the angle between the normal n(x0) and the x-axis and T is a rotational matrix.

The x̂-axis then points in the same direction as n(x0) and the ŷ-axis points in the tangential

direction. In this local coordinate system, the reactive Euler equations (2.13) are written as

Û t + F (Û)x̂ + G(Û)ŷ = S(Û), (2.16)
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where

Û =















Û1

Û2

Û3

Û4

Û5















=













ρ
ρû
ρv̂
E
ρY













,

(

û
v̂

)

= T

(

u
v

)

.

For a fifth order boundary treatment, the value of the ghost point P is imposed by the

Taylor expansion

(Ûm)i,j =
4
∑

k=0

∆k

k!
Û∗(k)

m , m = 1, . . . , 5, (2.17)

where ∆ is the x̂-coordinate of P and Û
∗(k)
m is a (5−k)th order approximation of the normal

derivative ∂kÛm

∂x̂k

∣

∣

∣

(x,y)=x0, t=tn
. We assume Û 0 is the value of a grid point nearest to P0 among

all the grid points inside Ω. We denote the Jacobian matrix of the normal flux by

A⊥(Û 0) =
∂F (Û)

∂Û

∣

∣

∣

∣

∣

Û=Û0

.

A⊥(Û 0) has five eigenvalues λ1 = û0 − c0, λ2 = λ3 = λ4 = û0, λ5 = û0 + c0 and a complete

set of left eigenvectors lm(Û 0), m = 1, . . . 5, which forms a matrix

L(Û 0) =















l1(Û 0)

l2(Û 0)

l3(Û 0)

l4(Û 0)

l5(Û 0)















=













l1,1 l1,2 l1,3 l1,4 l1,5

l2,1 l2,2 l2,3 l2,4 l2,5

l3,1 l3,2 l3,3 l3,4 l3,5

l4,1 l4,2 l4,3 l4,4 l4,5

l5,1 l5,2 l5,3 l5,4 l5,5













.

For definiteness, we assume λ1 < 0 and λ5 > λ2 = λ3 = λ4 > 0. Thus one boundary condition

is needed at P0. For example, the normal momentum is prescribed Û2(x0, t) = g2(t).

The local characteristic variables Vm at grid points near P0 are defined by

(Vm)µ,ν = lm(Û 0)Ûµ,ν , m = 1, . . . , 5, (xµ, yν) ∈ Ei,j, (2.18)

where Ei,j ⊂ Ω is a set of grid points used for extrapolation. We extrapolate (Vm)µ,ν to P0

and denote the extrapolated kth order x̂-derivative of Vm by V
∗(k)
m , k = 0, . . . , 4. The choice

of Ei,j and the fifth order WENO type extrapolation in 2D will be described in detail in the

next subsection.
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We solve Û
∗(0)
m by a linear system of equations













0 1 0 0 0
l2,1 l2,2 l2,3 l2,4 l2,5

l3,1 l3,2 l3,3 l3,4 l3,5

l4,1 l4,2 l4,3 l4,4 l4,5

l5,1 l5,2 l5,3 l5,4 l5,5



























Û
∗(0)
1

Û
∗(0)
2

Û
∗(0)
3

Û
∗(0)
4

Û
∗(0)
5















=















g2(tn)

V
∗(0)
2

V
∗(0)
3

V
∗(0)
4

V
∗(0)
5















. (2.19)

Here the first equation is the prescribed boundary condition. The other equations represent

extrapolation of the four outgoing characteristic variables Vm, m = 2, . . . , 5. Next, we use

the ILW procedure for Û2. The second equation of (2.16) gives us

∂Û2

∂t
= −

(

γ − 3

2

Û2
2

Û2
1

+
γ − 1

2

Û2
3

Û2
1

)

∂Û1

∂x̂
− (3 − γ)

Û2

Û1

∂Û2

∂x̂

+(γ − 1)
Û3

Û1

∂Û3

∂x̂
− (γ − 1)

∂Û4

∂x̂
+ Q(γ − 1)

∂Û5

∂x̂
− ∂

∂ŷ

(

Û2Û3

Û1

)

.

At the boundary, the left-hand side of the above equation is the known function g′
2(t). The

tangential derivative on the right-hand side can be computed by numerical differentiation,

since we have obtained Û
∗(0)
m of all the ghost points. Thus Û

∗(1)
m can be solved by the linear

system

A∗(0)















Û
∗(1)
1

Û
∗(1)
2

Û
∗(1)
3

Û
∗(1)
4

Û
∗(1)
5















=



















−g′
2(tn) − ∂

∂ŷ

(

Û
∗(0)
2 Û

∗(0)
3

Û
∗(0)
1

)

V
∗(1)
2

V
∗(1)
3

V
∗(1)
4

V
∗(1)
5



















, (2.20)

where

A∗(0) =

















γ−3
2

(

Û
∗(0)
2

Û
∗(0)
1

)2

+ γ−1
2

(

Û
∗(0)
3

Û
∗(0)
1

)2

(3 − γ)
Û

∗(0)
2

Û
∗(0)
1

(1 − γ)
Û

∗(0)
3

Û
∗(0)
1

γ − 1 Q(1 − γ)

l2,1 l2,2 l2,3 l2,4 l2,5

l3,1 l3,2 l3,3 l3,4 l3,5

l4,1 l4,2 l4,3 l4,4 l4,5

l5,1 l5,2 l5,3 l5,4 l5,5

















.

Repeatedly using equations (2.16) and the extrapolation equations, we are able to solve Û
∗(k)
m ,

k = 2, 3, 4. However, the algebra of the ILW procedure becomes extremely complicated for
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equations (2.16), which makes the implementation impractical. As for 1D problems, we can

avoid the cumbersome ILW and use extrapolation only. Û
∗(k)
m , k = 2, 3, 4, can be solved by

L(Û 0)















Û
∗(k)
1

Û
∗(k)
2

Û
∗(k)
3

Û
∗(k)
4

Û
∗(k)
5















=















V
∗(k)
1

V
∗(k)
2

V
∗(k)
3

V
∗(k)
4

V
∗(k)
5















. (2.21)

An important class of boundary conditions for (reactive) Euler equations is the no-

penetration boundary condition at solid walls, i.e., û = 0 or Û2 = 0. In this case, the

eigenvalues λ1 ≈ −c0 < 0, λ5 ≈ c0 > 0 and λ2 = λ3 = λ4 ≈ 0. Since only one boundary

condition is prescribed, we consider Vm, m = 2, . . . 5, to be outgoing and V1 to be ingoing,

which falls into the same case as discussed above. (2.19) gives us Û
∗(0)
2 = 0. Then the first

equation of (2.20) reduces to

γ − 1

2

(

Û
∗(0)
3

Û
∗(0)
1

)2

Û
∗(1)
1 + (1 − γ)

Û
∗(0)
3

Û
∗(0)
1

Û
∗(1)
3 + (γ − 1)Û

∗(1)
4 − Q(γ − 1)Û

∗(1)
5

=

(

Û
∗(0)
3

)2

RÛ
∗(0)
1

, (2.22)

where R is the radius of curvature of ∂Ω at P0. Notice that there is no tangential derivative

in (2.22). Therefore, we do not need to do any numerical differentiation, which further

simplifies the implementation.

(2.22) can also be derived by considering primitive variables, i.e., ρ, û, v̂, p and Y , in the

ILW procedure. At the solid walls, we obtain

∂p

∂x̂
= ρ

v̂2

R
, (2.23)

which is equivalent to (2.22) because of the equation of state (2.14). In fact, it is some-

times more convenient to use primitive variables than to use conservative variables U . The

performance of the former is good as illustrated in [19].

We now summarize our fifth order boundary treatment for the 2D problem (2.13). We

assume the values of all the grid points inside Ω have been updated from time level tn−1 to

14



time level tn. Our goal is to impose the value of (Ûm)i,j , m = 1, . . . , 5, for each ghost point

(xi, yj).

1. For each ghost point (xi, yj), we do the following three steps:

• Decide the local coordinate system (2.15). Compute the eigenvalues λm(Û 0) and

left eigenvectors lm(Û 0) of the Jacobian matrix A⊥(Û 0) for m = 1, . . . 5. Decide the

prescribed inflow boundary conditions gm(t) according to the signs of λm(Û 0).

• Form the local characteristic variables (Vm)µ,ν , (xµ, yν) ∈ Ei,j, as in (2.18). Extrap-

olate (Vm)µ,ν to the boundary to obtain V
∗(k)
m , k = 0, . . . , 4, with fifth order WENO

type extrapolation. Details of the 2D extrapolation will be discussed in the next

subsection.

• Solve for Û
∗(0)
m , m = 1, . . . , 5, by the prescribed boundary conditions and extrapo-

lated values V
∗(0)
m , such as (2.19).

2. For each ghost point (xi, yj), use the ILW procedure to write the first derivative of gm(t)

as a linear combination of first normal derivatives plus tangential derivatives. Together

with the extrapolation equations, form a linear system with Û
∗(1)
m as unknowns, such as

(2.20). Solve for Û
∗(1)
m , m = 1, . . . 5. For k = 2, 3, 4, solve for Û

∗(k)
m by extrapolation

equations (2.21) where the ILW procedure is not needed.

3. Impose the values of the ghost points by the Taylor expansion (2.17).

If no-penetration boundary condition is considered at solid walls, then the first equation

of (2.20) is replaced by (2.22) in Step 2 with other steps unchanged. An alternative is to use

primitive variables instead of conservative variables.

2.4 2D WENO type extrapolation

We return to the issue of 2D fifth order WENO type extrapolation. It is needed in the second

bullet of Step 1 of the algorithm flowchart in Section 2.3, regardless of the smoothness of the
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solution. For stability reason, we used third order least squares extrapolation if the solution

is smooth near the boundary or third order WENO type extrapolation otherwise in [18].

Our fifth order extrapolation should combine the features of both. Namely, more points are

needed to construct a 2D extrapolating polynomial and the extrapolation should not have

severe overshoot or undershoot near the discontinuities.

For a given ghost point (xi, yj), we aim to first construct a stencil E ⊂ Ω for extrapolation

and then to obtain a (5 − k)th order approximation of ∂kV
∂x̂k

∣

∣

∣

(x,y)=x0

, which is denoted by

V ∗(k) , k = 0, . . . , 4. Compared with the notations used in Section 2.3, here we suppress

the subscripts indicating the mth component of V and that the stencil E is for the ghost

point (xi, yj). E =
⋃4

r=0 Er consists of five substencils Er, r = 0, . . .,4, each of which is for

constructing a least squares polynomial pr(x, y) in P r, i.e.,

pr(x, y) =
∑

06m+l6r

almxlym

satisfying

pr(xµ, yν) = Vµ,ν , for all (xµ, yν) ∈ Er. (2.24)

Notice that pr(x, y) has (r + 1)(r + 2)/2 degrees of freedom. We choose Er such that it

contains (r + 1)2 points and (2.24) holds in the sense of least squares if r > 0.

We take r = 3 as an example to show how to choose Er. E3 is composed of 16 square

points sketched in Fig. 2.1. It contains four 1D substencils Sl, l = 0, . . . , 3. Suppose the

normal n(x0) (or x̂-axis) intersects the grid line y = yn−l at a point P ∗
l . We denote the grid

point on the horizontal line y = yn−l which is just to the left of P ∗
l by (xl

m, yn−l). Then we

set

Sl = {(xl
m−1, yn−l), (x

l
m, yn−l), (x

l
m+1, yn−l), (x

l
m+2, yn−l)}, l = 0, . . . , 3,

and E3 =
⋃3

l=0 Sl. Notice that we have to shift S0 to the left by one grid point so that S0

lies in Ω.
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Figure 2.1: The choice of E3 (square points) for 2D WENO type extrapolation.

On each Er, r = 0, . . . , 4, V ∗(k) can be extrapolated by

V ∗(k) =
∂k

∂x̂k
pr(x, y)

∣

∣

∣

∣

(x,y)=x0

.

We seek WENO type extrapolation of the form

V ∗(k) =
4
∑

r=0

ωr
∂k

∂x̂k
pr(x, y)

∣

∣

∣

∣

∣

(x,y)=x0

, (2.25)

where ωr are nonlinear weights. The nonlinear weights ωr are defined by

ωr =
αr

∑4
s=0 αs

,

with

αr =
dr

(ε + βr)q
, (2.26)

where d0 = 2h4, d1 = 2h3, d2 = 2h2, d3 = 2h, d4 = 1 −
∑3

r=0 dr, ε = 10−6 and q > 3 is an

integer. The smoothness indicators βr are determined by

β0 = 2h2,

βr =
∑

16|α|6r

∫

K

|K||α|−1 (Dαpr(x, y))2 dxdy, r = 1, . . . , 4,

where α is a multi-index and K = [x0 − h/2, x0 + h/2] × [y0 − h/2, y0 + h/2]. We can show

that (2.25) is (5 − k)th order accurate if V is smooth in E and ωr vanishes as h → 0 if Er

contains a discontinuity.
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3 Numerical examples

We test our fifth order boundary treatment in this section. For accuracy tests, we take

∆t = O(h5/3) in the third order RK time integration (2.3) in order to have fifth order

accuracy in time. For other cases, we take ∆t = O(h) and the CFL number as 0.6. The

specific heat ratio γ in (reactive) Euler equations is taken as γ = 1.4 and the power q in

(2.12) or (2.26) is taken as q = 3, unless otherwise indicated.

3.1 1D Euler equations

Example 1 We redo Example 3(a) in [18] with the simplified and improved algorithm. The

domain is (−π, π) and the initial condition is

ρ(x, 0) = 1 + 0.2 sinx,

u(x, 0) = 1,

p(x, 0) = 2.

We want to impose the boundary conditions such that the exact solution is simply a trans-

lation of the initial condition

p(x, t) = 1 + 0.2 sin(x − t),

u(x, t) = 1,

p(x, t) = 2.

At both boundaries, we have λ1 < 0 and λ3 > λ2 > 0. We prescribe ρ(−π, t), u(−π, t) and

ρ(π, t). The density errors are listed in Table 3.1. We can clearly see the designed fifth order

convergence.

Example 2 We consider the interaction of two blast waves [24]. The initial data are

U(x, 0) =







UL 0 < x < 0.1,
UM 0.1 < x < 0.9,
UR 0.9 < x < 1,
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Table 3.1: Density errors and convergence rates of Example 1. h = 2π/N . t = 2.
N L1 error Order L∞ error Order
40 7.02E-05 5.84E-04
80 2.82E-07 7.96 2.84E-06 7.69
160 3.16E-09 6.48 1.78E-08 7.31
320 9.89E-11 5.00 5.58E-10 5.00
640 3.06E-12 5.02 1.73E-11 5.01

where ρL = ρM = ρR = 1, uL = uM = uR = 0, pL = 103, pM = 10−2, pR = 102. There are

solid walls at both x = 0 and x = 1. This problem involves multiple reflections of shocks

and rarefactions off the walls. The density profile at t = 0.038 is shown in Fig. 3.1(a) with

h = 1/800 and in Fig. 3.1(b) with h = 1/1600. The reference solution is computed by

the fifth order WENO scheme with h = 1/16, 000, together with the reflection technique

at both boundaries. Our fifth order boundary treatment gives an excellent non-oscillatory

resolution. The results are similar to those obtained by a third order boundary treatment

in Example 4 of [18].
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(a) h = 1/800
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(b) h = 1/1600

Figure 3.1: The density profiles of the blast wave problem. Solid lines: reference solution
computed by the fifth order WENO scheme with h = 1/16, 000, together with the reflec-
tion technique at boundaries; Symbols: numerical solutions by our fifth order boundary
treatment.
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3.2 2D Euler equations

Example 3 We test the vortex evolution problem on a disk Ω = {(x, y) : x2 + y2 < 0.5}.

The mean flow is ρ = p = u = v = 1. We add to this mean flow an isentropic vortex

perturbation centered at (x0, y0) = (0.3, 0.3) in (u, v) and in the temperature T = p/ρ, no

perturbation in the entropy S = p/ργ

(δu, δv) =
ǫ

2π
e0.5(1−r2)(−ȳ, x̄),

δT = −(γ − 1)ǫ2

8γπ2
e(1−r2),

δS = 0,

where (x̄, ȳ) = (x − x0, y − y0), r2 = x̄2 + ȳ2 and the vortex strength is ǫ = 5. We regard

the exact solution U(x, y, t) as the passive convection of the vortex with the mean velocity

and take boundary conditions from U(x, y, t) whenever needed. The number of boundary

conditions is determined by the signs of the four eigenvalues λm which vary both in space

and in time. This problem was tested by a third order boundary treatment in Example 7 of

[18]. Here we are able to test our fifth order method, thanks to the simplified algorithm. The

density errors are listed in Table 3.2. We can see that the designed fifth order convergence

is achieved in the L1 norm.

Table 3.2: Density errors of the vortex evolution problem on a disk. t = 0.1.
h L1 error Order L∞ error Order

1/20 1.94E-07 2.55E-05
1/40 3.66E-09 5.73 1.94E-07 7.04
1/80 1.22E-10 4.91 1.07E-08 4.17
1/160 4.26E-12 4.83 6.00E-10 4.16

Example 4 We test the double Mach reflection problem [24] which involves a solid wall not

aligned with the grid lines. This problem is initialized by sending a horizontally moving shock

into a solid wall inclined by a 30◦ angle. In order to impose the no-penetration boundary

condition by the reflection technique, people usually solve an equivalent problem that puts
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the wall horizontal and puts the shock 60◦ angle inclined to the wall, see for example [7, 15].

We consider the solution of the equivalent problem as our reference solution.

We solve the original problem on a uniform mesh with our fifth order boundary treatment

in conservative variables. The problem setup is the same as in Example 8 of [18]. The

computational domain is sketched in Fig. 3.2(a), together with some of the grid points near

the wall indicating that the wall is not aligned with the grid lines. Initially a right-moving

Mach 10 shock is positioned at (0, 0). At y = 0, the exact postshock condition is imposed.

At the top boundary, the flow values are set to describe the exact motion of the Mach 10

shock. Supersonic inflow and outflow boundary conditions are used at the left and right

boundary, respectively. The power q in (2.26) is taken as q = 20 to stabilize our boundary

treatment. Fig. 3.2(b) shows the density contour with h = 1/320 at t = 0.2. A zoomed-

in region near the double Mach stem is shown in Fig. 3.3(a). The region is rotated and

translated for the ease of comparison. In Fig. 3.3(b), we show the reference solution on a

mesh with comparable size. Figs. 3.3(c) and 3.3(d) show the density contours on a refined

mesh. Compared with the results in [18], our results here seem to be closer to the reference

solution in terms of the location of the “blown-up” portion around the double Mach stem.

Example 5 This is an example involving a curved wall. The problem is initialized by a

Mach 3 flow moving toward a circular cylinder of unit radius positioned at the origin on a x-

y plane. The problem setup is the same as in Example 9 of [18]. The computational domain

is the upper half of the physical domain shown in Fig. 3.4(a), due to the symmetry of this

problem. At y = 0, the reflection technique is used. Supersonic inflow boundary condition is

used at the left boundary x = −3 and supersonic outflow boundary condition is used at the

top boundary y = 6 and at the right boundary x = 0. Our fifth order boundary treatment in

primitive variables with q = 10 in (2.26) is applied at the surface of the cylinder. Notice that

although the initial condition is incompatible with the no-penetration boundary condition,

we do not encounter any problem if using primitive variables, while difficulty arises if we use

conservative variables as reported in [18].
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(a) computational domain
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(b) density contour

Figure 3.2: Left: The computational domain (solid line) of the double Mach reflection
problem. The dashed line indicates the computational domain used in [7, 15]. The square
points indicate some of the grid points near the wall. Illustrative graph, not to scale. Right:
Density contour of double Mach reflection, 30 contour lines from 1.731 to 20.92. h = 1/320.
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(a) h = 1/320, original problem
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(b) h =
√

3/480, equivalent problem

X

Y

2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

(c) h = 1/640, original problem
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Figure 3.3: Density contours of double Mach reflection, 30 contour lines from 1.731 to
20.92. Zoomed-in near the double Mach stem. The plots in the left column are rotated and
translated for comparison.
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The pressure contour at steady state is shown in Figs. 3.4(b) and 3.4(c) with different

mesh sizes. The bow shock is well-captured by our method. For a more quantitative verifica-

tion, we take advantage of the entropy along the surface, which can be computed analytically

by using the Rankine-Hugoniot conditions for the streamline normal to the bow shock at

y = 0. Since there is usually no grid point located on the surface, we compute the entropy

errors of the state Û
∗(0)
m , m = 1, . . . 4, which is the constant term in the Taylor expansion

(2.17), for all the ghost points. We can see superlinear convergence rates in Table 3.3.

(a) physical domain

X

Y

-3 -2 -1 0
-4

-3

-2

-1

0
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3

(b) h = 1/40

X
Y

-3 -2 -1 0
-4

-3

-2

-1

0

1

2

3

(c) h = 1/80

Figure 3.4: Left: Physical domain of flow past a cylinder. The computational domain is the
upper half. The square points indicate some of the grid points near the cylinder. Illustrative
sketch, not to scale. Others: Pressure contours of flow past a cylinder, 20 contour lines from
2 to 15.

Table 3.3: L∞ entropy errors on the surface of the cylinder and rates of convergence of
Example 5.

h L∞ error Order
1/20 1.68E-02
1/40 7.06E-03 1.25
1/80 1.88E-03 1.91
1/160 7.50E-04 1.33

23



3.3 2D reactive Euler equations

Example 6 We would like to test the accuracy of our boundary treatment for 2D reactive

Euler equations in this example. Unfortunately, it is difficulty to construct an analytical

solution with no-penetration boundary condition at solid curved walls. We follow the idea

in Example 4 of [19] to construct isentropic flows so that we are able to measure the entropy

errors. We set the source term ω = 0 in (2.13) such that isentropic flows can be maintained

as long as the flows keep smooth. Namely, we only consider the transport of the chemical

reactants. The heat release is set to Q = 2.

We consider a region [−4, 4] × [−4, 4] with all the boundaries as solid walls. A circular

cylinder with unit radius is centered at the origin. The computational domain is then

Ω = [−4, 4] × [−4, 4] ∩ {(x, y) : x2 + y2 > 1}. The initial conditions should be compatible

with the no-penetration boundary condition at the solid walls and at the surface of the

cylinder. For this purpose, we set

u(x, y, 0) = λ1(x, y)u1(x, y),

v(x, y, 0) =
1

2
[λ1(x, y)v1(x, y) + λ2(x, y)v2(x, y)] ,

where

λ1(x, y) =

(

4
√

2 − 1
)

(

√

x2 + y2 − 1
)

(

√

16 + y2 − 1
)

(√
16 + x2 − 1

)

,

λ2(x, y) =

√

x2 + y2(x2 − 16)(y2 − 16)
(

x2

x2+y2 − 16
)(

y2

x2+y2 − 16
) ,

u1(x, y) = sin
(π

4
x
)

sin2
(π

4
y
)

,

v1(x, y) = u1(y, x),

v2(x, y) =
1

16

(

x2 + y2 − 1
)

sin
(π

4
x
)

.

The other initial conditions are ρ(x, y, 0) = p(x, y, 0) = 1 and

Y (x, y, 0) =
1

2

[

1 + sin2
(π

4
x
)

sin2
(π

4
y
)]

.
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We apply our fifth order boundary treatment in primitive variables at the surface of the

cylinder and the reflection technique at the solid walls. Fig. 3.5 shows the density contour

with h = 1/20 at t = 0.5. The entropy errors at the same time level are listed in Table 3.4.

Fifth order convergence is achieved.

Figure 3.5: Density contour of Example 6. h = 1/20, t = 0.5.

Table 3.4: Entropy errors and convergence rates of Example 6. t = 0.5.
h L1 error Order L∞ error Order

1/5 1.44E-03 5.67E-04
1/10 5.00E-05 4.84 2.72E-05 4.38
1/20 8.66E-07 5.85 5.03E-07 5.76
1/40 2.26E-08 5.26 1.81E-08 4.80

Example 7 We start to consider problems involving detonations. It is a rapid regime of

burning in which a strong shock ignites the combustible mixture of gases and the burning

proceeds to equilibrium behind the shock, while the energy released continues to help to

drive the shock [14]. The first problem is the reflection of detonation waves on a wedge, see

[6, 20] for experiments and [12, 23] for numerical simulations. The computational domain

is sketched in Fig. 3.6(a). A Zeldovich, von Neumann and Doering (ZND) profile with
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T+ = 50, Q = 50, f = 1.0, γ = 1.2 is initially located at x = −118.2. Here f is the overdrive

factor defined by f = D2/D2
CJ, where D is the detonation velocity and DCJ is the velocity

of the corresponding Chapman-Jouguet wave. The constant prestate is (ρ, u, v, p, Y ) =

(1, 0, 0, 1, 1). See [2, 26] for details about the ZND profile. The density and pressure fields

of this profile are perturbed so that the instability of the flow results in the development of

triple points, whose trajectories form a cellular pattern [2, 4, 14]. The perturbation is in the

region [−117.0,−115.8] × [0, 100] in which

ρ(x, y, 0) = p(x, y, 0) =

{

1.8 if y ∈ [20, 40] ∪ [60, 80],
0.2 otherwise.

Supersonic inflow and outflow boundary conditions are used at x = −120 and at x = 120,

respectively. The reflection technique is applied at y = 0 and at y = 100. Our fifth order

boundary treatment in conservative variables with q = 40 in (2.26) is used at the surface of

the wedge.

(a) Example 7 (b) Example 8

Figure 3.6: Left: Computational domain of Example 7. Right: Physical domain of Example
8. The computational domain is the upper half. Both are Illustrative sketches, not to scale.

We first set the wedge angle θ = 19.3◦. We run the code until t = 28 with h = 0.15.

Fig. 3.7(a) shows the cellular detonation pattern determined by recording the history of the

maximum pressure. The cellular pattern is similar to the experimental results in Figs. 5,

10, 11 of [6] and the numerical results in Fig. 8 of [23]. From Fig. 3.7(a), we can observe

the main feature of the detonation wave reflection. There is a sharp dividing line, made up

by a triple point trajectory, emerging near the tip of the wedge and extending downstream.
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The detonation cells below the line are smaller than those above the line and are distorted

in shape.

(a) θ = 19.3◦ (b) θ = 30◦

Figure 3.7: Cellular patterns of detonation waves over a wedge of angle θ.

Next, we increase the wedge angle to θ = 30◦ and keep other parameters unchanged.

The cellular pattern at t = 30 with h = 0.15 is shown in Fig. 3.7(b). As the experimental

results in Fig. 1(d) of [20], Fig. 7 of [6] and the numerical result in Fig. 9 of [12], the cellular

pattern is not clear in this case since the spatial scale of the region between the wedge and

the reflection of transverse waves is small. However, the dividing line is still quite sharp.

Example 8 We consider the shock focusing problem. The physical domain is sketched in

Fig. 3.6(b). The curve represents a solid wall with parabolic shape. A right-moving Mach

2.5 shock is initially positioned at x = −dw, where dw is the depth of the parabolic wall.

The preshock state is (ρ, u, v, p, Y ) = (0.2, 0, 0, 0.2, 1). As the incident shock wave enters the

cavity of the end-wall, there are local zones with elevated pressure and temperature. The

formation of such hot zones causes self-ignition which is sometimes followed by detonation

initiation. See [5] for experiments and [1] for numerical simulations.

We set T+ = 20, Q = 50 and Kc = 30. The computational domain is the upper half of

the physical domain due to the symmetry of this problem. The reflection technique is used

at y = 0 and at y = 2.7. Supersonic inflow boundary condition is used at the left boundary

x = −5. Our fifth order boundary treatment in primitive variables with q = 40 in (2.26) is

applied at the parabolic wall.
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In the first case, we consider a parabola y2 = −2.7x with dw = 2.7. The temperature

contours with h = 1/160 and h = 1/320 at different times are shown in Fig. 3.8. At t = 0.8,

a high temperature ignition zone is formed at the lateral surface near the Mach stem (see the

top row of Fig. 3.8), which shows that focusing induces exothermic reaction of combustible

gases. The primary ignition starts and the developing detonation waves are focused around

the center line (see the middle row). Similar structure persists until the detonation leaves

the cavity of the end-wall (see the bottom row).

In the second case, we consider a shorter parabola y2 = −4.5x with dw = 1.62. Other

parameters are kept the same. The temperature contours with h = 1/160 and h = 1/320

at different times are shown in Fig. 3.9. We again obtain convergent solutions with good

resolutions.

4 Concluding remarks

We improve the high order numerical boundary condition developed in [18] in two aspects.

First, we find that the ILW procedure is not needed for obtaining kth order normal derivative

for k > 2, regardless of the direction of the local characteristics. This makes the implementa-

tion of fifth order boundary treatment practical for 2D nonlinear systems with source terms.

For no-penetration boundary condition at solid walls, the tangential derivative terms involved

in the ILW procedure can be avoided to further simplify the implementation. Secondly, a

fifth order WENO type extrapolation is designed such that our algorithm keeps the same

for solutions with or without discontinuities. Various numerical examples, with or without

chemical reactions, demonstrate that our improved boundary treatment is fifth order accu-

rate and performs well even if there are complicated interactions between detonation/shock

waves and solid boundaries. In future work, we will try to extend this boundary treatment to

high order discontinuous Galerkin methods for compressible inviscid flows involving complex

geometries on rectangular meshes.
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(a) h = 1/160, t = 0.8 (b) h = 1/320, t = 0.8

(c) h = 1/160, t = 1.2 (d) h = 1/320, t = 1.2

(e) h = 1/160, t = 1.8 (f) h = 1/320, t = 1.8

Figure 3.8: Temperature contours of the shock focusing problem. 29 contour lines in the
respective range. dw = 2.7. The color outside the computational domain is not relevant.
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(a) h = 1/160, t = 0.6 (b) h = 1/320, t = 0.6

(c) h = 1/160, t = 1.0 (d) h = 1/320, t = 1.0

(e) h = 1/160, t = 1.4 (f) h = 1/320, t = 1.4

Figure 3.9: Temperature contours of the shock focusing problem. 29 contour lines in the
respective range. dw = 1.62. The color outside the computational domain is not relevant.
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